Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide.
نویسندگان
چکیده
The mechanism of axonal injury in inflammatory brain diseases is still unclear. Increased microglial production of nitric oxide (NO) is a common early sign in neuroinflammatory diseases. We found by fluorescence correlation spectroscopy that synaptophysin tagged with enhanced green fluorescence protein (synaptophysin-EGFP) moves anterogradely in axons of cultured neurons. Activated microglia focally inhibited the axonal movement of synaptophysin-EGFP in a NO synthase-dependent manner. Direct application of a NO donor to neurons resulted in inhibition of axonal transport of synaptophysin-EGFP and synaptotagmin I tagged with EGFP, mediated via phosphorylation of c-jun NH2-terminal kinase (JNK). Thus, overt production of reactive NO by activated microglia blocks the axonal transport of synaptic vesicle precursors via phosphorylation of JNK and could cause axonal and synaptic dysfunction.
منابع مشابه
Subcellular trafficking of the amyloid precursor protein gene family and its pathogenic role in Alzheimer's disease.
Changes in the intracellular transport of amyloid precursor protein (APP) affect the extent to which APP is exposed to alpha- or beta-secretase in a common subcellular compartment and therefore directly influence the degree to which APP undergoes the amyloidogenic pathway leading to generation of beta-amyloid. As the presynaptic regions of neurons are thought to be the main source of beta-amylo...
متن کاملDefect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice
The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron- specific microtubule plus end-directed moto...
متن کاملRecognition of Betaine as an Inhibitor of Lipopolysaccharide-Induced Nitric Oxide Production in Activated Microglial Cells
Background: Neuroinflammation, as a major outcome of microglia activation, is an important factor for progression of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. Microglial cells, as the first-line defense in the central nervous system, act as a source of neurotoxic factors such as nitric oxide (NO), a free radical which is involved in neuronal cell death. ...
متن کاملActivation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function.
Microglial activation as part of a chronic inflammatory response is a prominent component of Alzheimer's disease. Secreted forms of the beta-amyloid precursor protein (sAPP) previously were found to activate microglia, elevating their neurotoxic potential. To explore neurotoxic mechanisms, we analyzed microglia-conditioned medium for agents that could activate glutamate receptors. Conditioned m...
متن کاملAn MBoC Favorite: Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons
Neuronal cell bodies supply the axon and nerve terminal with organelle precursors, such as synaptic vesicle precursors, by means of membrane-bound carriers propelled by motors mounted on cytoskeletal tracks. Several neurodegenerative diseases, such as CharcotMarie-Tooth type 2 disease and hereditary spastic paraplegia, involve the defective delivery of organelles from the cell body and impaired...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2005